2013年12月29日 星期日


  1.  pumping lemma 只能證明語言 不是 context-free


  2. 可以寫出context-free grammar的語言是context-free的

  3. Pumping lemma
    Let L be a regular language. Then there exist a const n such for every string
    w in L such that |w| ≧ n, we can break w into three string, w = xyz,
    such that :
    1.  y≠ε
    2.  |xy| ≦ n
    3.  For all k ≧ 0, the string xy^kz is also in L
    
    L = {a^nb^n | n ≧ 1}
    
    w = a^nb^n
      = xyz
    x = a^i
    y = a^j
    z = a^(n-i-j)b^n          (i+j) ≦ n and j ﹥0
    
    k = 0,
    xy^kz = xy^0z
          = xz
          = a^ia^(n-i-j)b^n
          = a^(n-j)b^n
    
    j ≧ 1, (n-j)≠n => xy^0z is not in L

  4. 
    
    
    
    
    
    
    
  5.  A  context-free  grammar  is  said  to  be  in 
    Greibach  normal  form  if  all  productions 
    have the form A → ax where a  ∈ T and x ∈ V * .
    
    
    
    
    ex:
    S → abSb | aa
    就是給每一個不是出
    現在最左邊的  terminal  加一個 
    variable ,得到
    S → aBSB | aA 
    A → a 
    B → b 
    
    
    
    
    
    
    簡單來說 每個grammar只會product出
    
    
    (至少一個symbol)+(n個variable的形式,n>=0)
    
    
    這裡的+可以看成字串相加的運算

  6. 
    
    
    
    
    
  7. A  context-free  grammar  is  in 
    Chomsky  normal  form  if  all 
    productions  are  of  the  form  A → BC , 
    or A  → a, where A, B, C are in V, and a 
    is in T.

  8. 
    
    
    
    
    
    
    
    
    
    
    
  9. 兩個  instantaneous  description  之間轉換,
    用├ 這個符號表示。例如:
    (q1 , aw, bx)├  (q2 , w, yx)  if and only if 
    (q2 , y) ∈ δ(q1 , a, b)
    
    
    代表在狀態q2且stack被放入y
    是狀態q1,讀到a,且stack的b被抽掉,產生的production之一
  10. 
    
    
    
    
    
    
    
    
    
    
    
  11. A context-free grammar G = (V, T, S, P) 
    is  said  to  be  a  simple  grammar  or  s-
    grammar  if  all  its  productions  are  of 
    the form
    A → ax, 
      where A ∈ V, a ∈ T, x ∈ V * , and any pair 
    (A, a) occurs at most once in P.

  12. 
    
    
    
    
    
  13. Regular  grammar 的限制:箭頭左邊只能有
    一個變數、右邊也只能有一個變數、且只能全
    部在最左邊或全部在最右邊。

  14. 
    
    
    
    
    
    
    
  15.  A grammar G = (V, T, S, P) is said to be 
    context-free  if  all  productions  in  P  have 
    the form A →x, where A ∈ V and x ∈ (V ∪ T) * .

  16. A language L is said to be context-free if and only if there is a context-free grammar G such that L = L(G).
    
    
    一個語言被稱為context-free,只有在寫得出他的CFG的時候

  17. 
    
    
    
參考至:
http://www.csie.dyu.edu.tw/~spring/Teaching/98_2/Formal/index.xml

0 意見:

張貼留言